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Figure 1. (a) Radial magnetic field on Earth’s core—mantle boundary (CMB) viewed from near 20 degrees north latitude and 30
degrees east longitude. (Image: K. Soderlund.) (b) Schematized view of Earth’s deep interior structure with colour rendering of
hypothetical convection field in the fluid outer core. (Rendering: Julien et al. [1].)

the magnetic Reynolds number can then be recast as Rm = RmOK% /€y, where £p=Lp/D, L=
L11/D. (In dynamo models, U, and B, are likely to be volumic root-mean-square (r.m.s.) values of
U and B.) Equation (1.1) reduces to

Rm = Rmyt (1.4)

when considering the generalized length scale magnitude ¢.

In addition to a sufficiently large Rm, value, it has long been argued that Earth-like planetary
dynamo action requires a global-scale, leading-order force balance between the Lorentz force Fy,
and the Coriolis force Fc, with the pressure force Fp primarily making up the difference [17,18].
This defines so-called magnetostrophic balance in the fluid:

0=(FL+Fc)+Fp=(JxB+2pux )—Vp, (1.5)

where ] is the electric current density, p is fluid density and p is the pressure in the fluid. The
buoyancy force must also exist to drive the convective flow u. Taking note of this here, we will
not consider this term in our considerations of magnetostrophic balance.

Magnetostrophic balance is typically estimated via the Elsasser number A, the ratio of Lorentz
and Coriolis forces in the fluid:

__Lorentz  JxB /B
" Coriolis  2p xu 2p0U°

(1.6)

Using the Rm « 1 form of Ohm’s law that neglects time variations in B, the current density scales
as | ~ o UyB, [19,20]. This yields the traditional definition of the Elsasser number:

2
0B}

Ay = ,
T 20

(1.7)

which is referred to here as the linear Elsasser number. The low Rm form of | employed in (1.7)
does not accurately describe the large-scale magnetohydrodynamics (MHD) in dynamo systems
where Rm, must significantly exceed unity for global-scale dynamo action to be possible. Making
use of ] ~ o U,B, requires that the dynamics are occurring on a relatively small scale, £ < D, such
that Rm « 1 and thus conflates large- and small-scale MHD processes. In addition, because A, is
independent of length scale, it is natural (although incorrect) to posit that A, ~ 1 dynamo systems
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must be in magnetostrophic balance at all scales. This is a misinterpretation of the physical
meaning of A,, which is meaningful only on the small length scales at which Rm « 1.

We contend here that global-scale magnetostrophic balance does not occur in the vast majority
of planetary dynamo models. Instead, the flows in these simulations are nearly all in a gquasi-
geostrophic balance in which Coriolis and pressure forces comprise the dominant force balance
on large scales in the fluid [20-28]. This contention raises the following questions: under what
conditions, if any, do the magnetostrophic predictions of linear theory apply to nonlinear
planetary dynamo systems? Does magnetostrophic balance manifest at any length scale of
planetary core convection? And if so, do our planetary dynamo models get this right?

In an attempt to address these questions, the results of the plane-layer linear theory of
rotating magnetoconvection [6] are compared with the results of recent planetary dynamo models
carried out in spherical shell geometries. It can be argued that these two systems, disparate
in terms of geometry and Rm, values, cannot be meaningfully related (cf. [29]). However,
this intercomparison is ubiquitously made in the dynamo literature when considerations of
magnetostrophic balance are put forth. We intend to define when such comparisons are justified.

To do so, the predictions of linear rotating magnetoconvection theory are presented in §2 and
are then directly compared with the results of current numerical planetary dynamo experiments
in §3. This makes clear that there is little evidence for global-scale magnetostrophic balance in
typical planetary dynamo models. In §4, we reconsider the formulation of the Elsasser number,
extending the work of [20,23] and providing a new magnetostrophic ‘cross-over scale’ £x =~
A2 /Rm,. We argue that magnetostrophic balance can manifest only on flow scales below £x, and
that quasi-geostrophic convection dynamics will dominate on all scales greater than £x. Finally, in
§5, we discuss the implications and limitations of £x and how it can be used to interpret planetary
dynamo modelling results and observations.

2. Aforay into linear theory

The concept that planetary dynamos evolve to a global magnetostrophic state was first posited
following Chandrasekhar’s linear stability analysis of plane layer rotating magnetoconvection
[6,30]. The linear theory predicts that convection develops from the stationary u = 0 (Rm = 0) state
most easily in the presence of an A, ~ 1 imposed magnetic field [6,31]. Thus, the interaction of
strong magnetic forces and comparably strong rotational forces allows the onset of convection
to occur more easily. In contrast, convective onset would be strongly suppressed were either
of these forces to act alone [32]. This has led to the idea that convection-driven dynamos will
naturally function most efficiently in the magnetostrophic regime where the convection itself is
most efficient (e.g. [33,34], cf. [35]).

Chandrasekhar famously derived the dispersion relations for convection in a plane layer
of electrically conducting fluid with vertically oriented rotation and magnetic field vectors [6].
Qualitatively similar results are found in the case of a horizontally imposed magnetic field,
although linear magnetostrophic effects are predicted to arise at somewhat lower values of A,
[36,37]. Further, spherical analyses of linear rotating magnetoconvection produce qualitatively
similar asymptotic scalings [38], albeit with an array of additional complexities [39].

For isothermal, mechanically stress-free, electrically insulating boundary conditions, the
dispersion relation for steady convection in a fluid of vertical layer depth D is given by equation
(4.59) in Chandrasekhar’s treatise [6], and the equations necessary to solve for oscillatory
convection are given by equations (4.65) and (4.66). Onset solutions that are ‘steady’ vary in space,
but are stationary and do not vary in time. In contrast, in cases of ‘oscillatory” onset, the motions
that first develop oscillate sinusoidally in time.

Solutions of these dispersion relations are presented here in terms of the following parameters
(for detailed definitions, see [40]). The Rayleigh number,
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Figure 2. Non-magnetic rotating convection (A, = 0) marginal stability curves (Ra-k) ina liquid metal (Pr = 0.025). The solid
(dashed) lines denote steady (oscillatory) convective onset conditions. Red, blue and green lines show the £ = 10=*, £ = 10~°
and £ = 107" stability curves, respectively. The coloured circles mark the minima of the steady marginal stability curves and,
thus, demarcate the values of the critical Rayleigh number Ra.;; and critical wavenumber k; values at a given £ value at which
the onset of steady convection occurs. Identical coloured circles carry the same information in figures 3, 6 and 8.

describes the non-dimensional buoyancy forcing, where o is thermal expansivity, g is
gravitational acceleration, AT is the superadiabatic temperature difference across the fluid layer,
v is the kinematic viscosity and « is thermal diffusivity. The Ekman number,
v
E=—,
202D?

is the ratio of the viscous and Coriolis forces. The Prandtl number,

is the ratio of the thermal and viscous diffusion time scales, whereas the magnetic Prandtl number,

Pm=-—,
n
is the ratio of the magnetic and viscous diffusion times. In the linear theory, the magnetic field is
not self-generated, as occurs in a dynamo. The strength of the imposed field is typically denoted
in linear studies of rotating magnetoconvection by the value of A, [18,33,41-43]. Chandrasekhar
[6,30], however, denotes the strength of the imposed magnetic field via what is now called the
Chandrasekhar number, Q = A,/E, which estimates the ratio of the Lorentz and viscous forces (in
the low Rm limit). Lastly, spatial scales are often discussed in theoretical analyses in terms of the
wavenumber, k = /¢, where ¢ = £/D is taken to be half of a wavelength.

Figure 2 shows Ra-k marginal stability curves for non-magnetic (A, = 0) rotating convection
in a core-like liquid metal with Pr=0.025 [44]. The red, blue and green curves denote solutions
at E=10"%, 107 and 10715, respectively. The solid curves mark the marginal values for steady
convection, which denote the lowest Ra value at which convection will develop for a given value
of k. The dashed curves demarcate the marginal Ra-k values for the oscillatory mode of convection,
which only develop in fluids for which Pr < 0.67 [6,45]. Each of these marginal stability curves
has a simple “U’-shape, with a single global minimum value of Ra as a function of k. This global
minimum in each curve denotes the critical Rayleigh number, Racit, and the corresponding keri¢
value sets the critical length scale €. at which the onset of convection will occur at a given value
of the Ekman number E. The small, coloured circles demarcate Ract-keriz for each of the three
steady marginal stability curves.
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Figure 3. Linear rotating convection (A, = 0) predictions for liquid metal (Pr = 0.025): (a) critical Rayleigh number, Rai;
(b) critical length scale, £t = 77 /Kqir. The solid black lines demarcate the onset values for steady convection, which has no
dependence on the Prandtl number Pr. The dashed black lines denote the onset of oscillatory convective motions, which can
occur only for Pr < 0.67 [6]. The coloured circles correspond to those shown in figure 2.

Figure 3a,b, respectively, shows curves of Ragit and fcrit = 7 /keri as a function of Ekman
number for Pr =0.025 plane layer rotating convection (A, = 0). The Ekman number values range
from the highest values used in planetary dynamo models (E = 10~%) down to low values relevant
to Earth’s core (E=10"1¢). These E values are plotted with the smallest values to the right,
in hopes of making clear that very low E values correspond to the extremely rapidly rotating
conditions that exist in planetary cores [46]. The three-coloured circles in each panel allow one to
connect the results for the three E curves in figure 2 to the results shown in figure 3a,b.

The curves shown in figure 3 agree well with the E — 0 asymptotic scalings of [45]. The E — 0
onset predictions for steady rotating convection yield

Raqit =8.7E"*3 and fqq =2.4E'3, (2.1)

whereas the predictions for oscillatory rotating convection in Pr < 0.67 fluids are

E —4/3 E 1/3
Rﬂcrit =174 — and ecrit =24 — . (22)
Pr Pr
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Figure 4. Schematic shows the properly scaled linear onset scale £.;; for steady convection for the three Ekman values shown
infigure 2: (@) £ =10"%; (b) £ =10"%; (c) F = 10~". In panel (c), the £'/* onset scale is close to 10~ the width of the fluid
shell D. Plotted using vector graphics, this convection structure does not appear visible in the image.

Using Pr = 0.025, as in figure 3, we estimate that the onset of oscillatory convection (dashed line)
will occur at a critical Rayleigh number that is approximately (17.4/8.7) Pr#/3 ~1.5% that of the
critical Ra value for steady convection (solid lines) at a given E value. Further, the oscillatory onset
scale in a Pr =0.025 fluid is predicted to be larger than the steady onset scale by a factor near to
Pro1/3 ~ 3 [47].

Figure 3b predicts an extreme range of {; values over the range of E values considered.
These ¢t values are plotted with the smallest values towards the top of the figure, in hopes of
making clear that very small-scale convective flows are predicted for low E conditions that exist in
planetary cores. The scales of such structures are shown schematically in figure 4 within Earth-like
spherical shell geometries. Quasi-geostrophic, axially aligned convection columns dominate the
flow field [48,49]. In typical present-day dynamo models, carried out at E ~ 10~#, these columnar
structures are large, with € ~ 1071 At E=1077, the ‘grand challenge’ value proposed in [50],
rotating convection structures will develop with roughly one thousand structures circumscribing
the outer core fluid volume (¢ ~ 1073). Finally, at the core value of E =105, approximately 10°
rotating convection onset structures are predicted to circumscribe the core (€ ~ 107°). Such high
wavenumber hydrodynamic structures are so small in scale that they are subpixel in figure 4c,
and, thus, are not visible. Similarly, such structures are approximately four orders of magnitude
below the limits of planetary magnetic field observations. Thus, individual A, =0 onset-scale
convection columns, should they exist in Earth’s core, are then not relevant to our interpretation
of geomagnetic flux patches or their temporal variations [24,51,52].

When a dynamically strong magnetic field is added, drastic changes, both qualitative and
quantitative, occur in the nature of the marginal stability curves. Figure 5 shows Ra-k marginal
stability curves for A, =1 rotating magnetoconvection cases in a core-like liquid metal with
Pr=0.025 and Pm=10"° [44]. As in figure 2, the red, blue and green curves denote solutions
at E=10"%, 1072 and 10715, respectively. The solid curves mark the marginal values for steady
convection, and the dashed curves demarcate the marginal Ra-k values for oscillatory convective
modes [6]. For A, ~ 1 rotating magnetoconvection, the marginal stability curves no longer have
simple ‘U’-shaped wells, like those found for the rotating convection curves in figure 2. Instead,
there is a broad well on the left side of this plot centred near k >~ 3, which corresponds to the steady
magnetostrophic convection branch. At higher wavenumbers, the geostrophic convective modes
dominate, such that the marginal stability curves are similar to the rotating convection curves
of figure 2. Except at E=10"% (where the wells are nearly overlapping), the critical Rayleigh
number Raqj is determined by the low wavenumber (e.g. kerit > 3; €erit 2 1) minimum of the
steady magnetostrophic convection branch.
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Figure 5. Rotating magnetoconvection (A, = 1) marginal stability curves (Ra-k) in a liquid metal (Pr = 0.025, Pm = 1079).
The solid (dashed) lines denote steady (oscillatory) convective onset conditions. Red, blue and green lines, respectively, show
the stability curvesat f =10=*, F=10""and £ =10~".

Figure 6 shows the A, =1, Pr=10.025, Pm = 1070 linear rotating magnetoconvection Racri: and
Lerit = 7 /kerit predictions (blue lines) as a function of Ekman number. These A, =1 onset values
are overlain atop the A, =0 rotating convection results (black lines) from figure 3. The critical
values for oscillatory rotating convection (dashed blue line) asymptote to the same solutions as
the oscillatory rotating convection branch (dashed black line), as may be inferred by comparing
figures 2 and 5. The presence of the imposed magnetic field acts only to alter the oscillation
frequencies of the oscillatory A, =1 convection branch. These frequencies (which are not shown)
are significantly decreased relative to the faster inertial frequencies found in A, =0 rotating
convection solutions [6,45].

In contrast to the oscillatory branch, the steady rotating magnetoconvection branch is
fundamentally different from the rotating convection solutions. The solid blue line shows that the
onset of the steady rotating magnetoconvection solution varies as Racyt ~ E~! and has the lowest
possible critical Rayleigh value for E < 10~8. Thus, steady linear rotating magnetoconvection
should develop at Ra values ~E!/3 lower than steady rotating convection and ~ (E/Pr*)'/3 lower
than oscillatory rotating convection. This suggests that steady rotating magnetoconvection will
develop at significantly lower Ra values than can occur in rotating convection. For example,
using E =10"15 and Pr =0.025, the linear theory predicts Racit = 5.75 x 10'¢ for steady rotating
magnetoconvection, which is 6.6 x 107 the predicted critical value for steady rotating convection
and 4.5 x 1072 that for oscillatory rotating convection.

The length scale information given in figure 6b shows that steady rotating magnetoconvection
develops at £qit ~ O(1). Thus, the linear analysis predicts a factor of ~E~1/3 increase in flow
scale for A, ~ 1 relative to A, =0 rotating convection cases at the same E. This massive change
in scale—effectively from the micro-scale at A, =0 (figure 4c) to global scale at A, =1—
should be easily detected in dynamo systems in global magnetostrophic balance. We propose,
following [20], to use this fundamental change in scale between geostrophically balanced rotating
convection and magnetostrophically balanced rotating magnetoconvection to infer the presence
of the magnetostrophic branch of convection. Thus, we will focus on this large alteration
in convective flow scale in comparing dynamo model results against linear theory in the
following section.
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Figure 6. Linear rotating convection (A, = 0, black lines) and rotating magnetoconvection (A, = 1, blue lines) predictions
for liquid metal (Pr = 0.025): (a) critical Rayleigh number, Rag; (b) critical length scale, £t = 77 /kqir. The solid (dashed)
lines demarcate the linear predictions for steady (oscillatory) convection. The coloured circles correspond to the three circles
in figure 2.

3. Comparing spherical dynamo models against planar theory

We have assembled the results from a small subset of planetary dynamo modelling studies [20,
53-56] for comparison with the linear theoretical predictions. These dynamo modelling results
are summarized in table 1, with typical estimates for Earth given in the top row. Our sampling of
recent models is in no way comprehensive (cf. [57,58]), but the results are all relatively recent and
cover a broad range of input parameter values, e.g. 1072 > E > 1078, as well as output parameter
values, e.g. 0.06 < A, < 6.

Linear theory predicts that increasing the value of A, at fixed E can induce a sharp transition
from the small-scale €t ~ EL/3 rotating convection branch (also called the geostrophic branch)
to the large-scale £t ~ O(1) magnetoconvection branch (also called the magnetostrophic branch)
[6,18,42,59]. Steady, linear magnetostrophic convection is predicted to arise for A, > 4 5EY/3 [18].
Figure 7 shows E plotted versus A, from the data in table 1. All the dynamo cases in table 1 are
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Figure 7. Linear predictions of the transition to plane layer magnetostrophic convection in the presence of a vertical imposed
magnetic field, marked by the solid black line AE3 ~ 45 (e.q. see (64d) in [18]). The dynamo models in table 1 are
all over the line, showing that linear theory predicts that these models should operate in the magnetostrophic convection
regime. However, this prediction is not born out: the length scale information in figure 86 does not follow the £ ~ 0(1) linear
magnetostrophic scaling branch.

predicted to lie in the linear magnetostrophic convection regime. Thus, the expectation, based on
plane layer theory, is that the characteristic scale of flow in these dynamo models will roughly
follow the magnetostrophic trend ¢ ~ O(1) and should track approximately along the solid blue
curve in figure 6b.

In figure 8, in table 1, Rayleigh numbers and characteristic flow scales are plotted as a function
of Ekman number. The linear theoretical predictions are shown for comparison. Only steady
convection solutions (solid lines) are displayed since Pr > 0.67 in all the table 1 dynamo models.
Figure 8a shows that the Ra values track reasonably well with the E~#/3 trend of the geostrophic
branch of convection. Even though the precise Racit values differ from the plane layer linear
theoretical predictions owing to the effects of spherical geometry [48,59-61], the plane layer
predictions still provide an adequate qualitative proxy [20].

Figure 8b shows the typical flows scales in the table 1 dynamo cases plotted versus E. The red
and black symbols show the characteristic kinetic energy weighted length scales computed as

T - [ 2 k(uy - uy)
Ly, =—, here ky =, | =————, 1
Us i where ki; 2%, (3.1)

where ki is the kinetic energy weighted flow wavenumber and & is the volumic kinetic energy
density (cf. [20,57]). The black asterisks show hydrodynamic (Pm = 0) solutions from [20], whereas
the red asterisks show the corresponding dynamo solutions. The magenta plus-signs show the
characteristic scales in [56] computed as the integral of the rms velocity divided by the rms
vorticity of the bulk fluid,

_ urms

Luy (3.2)

Wrms
We call ¢y, the ‘gradient scale” of the flow, as it approximates the length scales at which the
characteristic velocity gradients exist in a given flow field. (We employ analogous definitions
exist for the magnetic energy-weighted scale of the magnetic field ¢p, == /kp and the magnetic
gradient scale ¢, = Brms/Jrms reported in table 1.)

The characteristic flow scales £;; do not follow the magnetostrophic trend, irrespective of the
length scale estimation method. Instead, the characteristic £y values track relatively closely to the
small-scale E'/? geostrophic branch. It must be noted though that the energy-weighted estimates
somewhat exceed the {; predictions. One possibility is that the flows have increased to the
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Figure 8. Results of Pr = 1dynamo models from table 1 plotted atop the linear predictions for steady A, =0and A, =1
convection. (@) dynamo Ra values (symbols) versus Rai; predictions (solid lines); (b) dynamo £, values (symbols) versus £
predictions (solid lines). All the values shown are measurements of £;;_, except the pink plus signs which show £y, values from
[56]. Inset in (b): dynamo £ values normalized by the hydrodynamic turbulence scaling estimate Ro'/2 = (Rm £ /Pm)'/2. The
dynamo length scales in (b) can be adequately described by either the non-magnetic £'/* onset scale or the Ro"/? turbulent
scale, but not by the £ ~ 0(1) linear magnetostrophic convection trend.

turbulent hydrodynamic length scale that grows in proportion to the square-root of the Rossby
number, Ro'/? = \/Rm,E/Pm (e.g. see equation (12) in [53]). The inset panel in figure 8b shows
the characteristic flow scales normalized by Ro'/2, With Lu/ Ro'/2 values in the vicinity of unity,
it is plausible that the flow scales are tracking either the geostrophic onset scale £;; ~ E'/3 or the
geostrophic turbulence scale £(; ~ Ro'/2. Tt is difficult to disambiguate as to which hydrodynamic
flow scaling is dominant over the range of E and Ro values presently accessible in planetary
dynamo models [18,51,58,62]. The essential point here, though, is that the flow scales are not
trending along the £ = O(1) magnetostrophic branch. This demonstrates that the table 1 nonlinear
dynamo models are not in global magnetostrophic balance. Subsequently, our comparison of
planetary dynamo results against plane layer linear theory shows that A, ~1 dynamo values
are not predictive of global scale magnetostrophic convection.
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4. Crossing into the magnetostrophic convection regime

(a) Estimating the cross-over scale

In this section, we further develop the ideas of Soderlund et al. [20,23] in order to estimate
the convective flow scales at which magnetostrophic balance should exist in high Rm,
dynamo settings.

Linear theory requires that motions are just beginning to be excited, such that Rm — 0 for
all scales ¢. This differs fundamentally from the geodynamo, for instance, where R, ~ 10%. At
high Rm values, one cannot use the low Rm scaling of Ohm’s law, | ~ o UB. Instead, Ampere’s
law (under the magnetohydrodynamic approximation) provides a more accurate estimate of the
current density,

V x B N B
B Mo HoLB ’
Substituting (4.1) in (1.6) yields the Elsasser number definition appropriate to Rm, > O(1)
dynamo settings:

J (4.1)

B2
A ————
2uopR2ULR
Relationship (4.2) makes clear that the ratio of Lorentz and Coriolis forces is a scale-dependent
quantity (as also shown in [20,23,63]). The value of the Elsasser number varies as ﬁgl, so that
the smaller the length scale of magnetic field variations, the greater the relative strength of the
Lorentz forces.

Over the observable range of magnetic field scales, 12 ¢ 2 0.1, it has been postulated that
Earth’s magnetic and kinetic energy spectra remain flat on the CMB (e.g. figure 6 in [18]). Based
on this, we will assume from here onwards that g >~ o ~0 at the large observable scales. These
assumptions allow (4.2) to be simplified to

Ay A ] 1
A —= —. 4.3
Rm [Rmo] I *3)

(4.2)

We contend that (4.3) gives a reasonable, heuristic estimate of A based on large-scale planetary
observations. (In contrast, if one were analysing high-resolution dynamo modelling results, more
accurate estimates of the scale variation in A would likely be found using (5.3) to better take into
account the scale dependences of U and B.)

In order to estimate the flow scale at which magnetostrophic convection can arise (A= 1)
using the simplified relationship (4.3), we must recast £ in terms of £1;. This estimate is made
by assuming quasi-steady induction:

u, B,
Bo— ~n—, 4.4
oﬁl,l nEZB (4.4)
such that 12
Ly
lg ~ . 4.5
; ( Rmo) (45)

Note that the flow scale is taken to be £y in the two expressions above, whereas the flow scale
was taken to be D in Soderlund ef al. [20].

Inserting (4.5) into (4.3) yields
1/2
A2 |1
A~ | — . 4.6

The quantity in square brackets in (4.6) can be interpreted as a non-dimensional length scale. This
characteristic length is called the magnetostrophic cross-over scale,

2

A ex \ M2
Ix=—2, suchthat A~ (-2 : 4.7)
Rm, Ly
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Figure 9. Heuristic scaling model shows the covariation of A ~~ (£ /£€;)"/? (solid red line) and Rm ~ Rm, €5 ~ (Rm, ;)2
(solid blue line) as a function of the flow scale £;. This model assumes that the characteristic velocity and magnetic field
magnitude estimates, U, and B,, are scale invariant. Farth-like values of A, =1 and Rm, = 10> generate an estimated
value of the cross-over scale of £x = Lx/D = 10~3 (dashed black line), below which magnetostrophic convection dynamics
are predicted to develop in nonlinear Rm, >> 1dynamo systems. The solid magenta line approximates the smallest observable
scales of geomagnetic field variations £. This limiting value is estimated as £ s > 77 /Nyax, Where Nz, = 13is the maximum
resolved spherical harmonic degree in current geomagnetic field inversions [5].

The cross-over scale provides a simple physical interpretation of A in nonlinear dynamo systems:
Lorentz forces are expected to be dynamically subdominant (A < 1) on flow scales ¢;; well above
the cross-over scale, whereas Lorentz forces may play a role in the dynamical balances (A > 1)
on flow scales below £x. Because it is possible to estimate ¢x using remotely estimated values of
B, and Uy (B,) [5,64], the value of £x provides a zeroth-order estimate of the scale below which
magnetostrophic convection may develop in a given dynamo system.

(b) A heuristic cross-over scale model

Figure 9 shows a hypothetical model for Rm (blue line) and A (red line) plotted versus non-
dimensional flow scale ¢ in a system with Earth-like values of A, =1 and Rm, = 103. As above,
we assume scale invariant velocity and magnetic field estimates, U ~ U, and B ~ B,. For £;; >~ 1
system scale flows, relationship (4.5) yields Rm = (Rimoly)Y/% = ng/ Zand A= Rmy 1 « 1. Thus,
the Lorentz forces are far weaker than the Coriolis forces on the largest length scales (as shown
previously in [20,23]). With decreasing scale, Rm decreases in proportion to Zi{z while A increases
in proportion to (&1 2,

At the magnetostrophic cross-over scale, the value of A reaches unity. On scales below £y,
A exceeds unity and the dynamics should come into local magnetostrophic balance. Thus, in
Rmy > O(1) dynamo systems, our simple model predicts that a magnetostrophic force balance can
be established only on flow field scales £1; < £x, whereas a primarily geostrophic balance of forces
will hold for ¢7 2 €x.

The magenta line in figure 9 approximates the smallest non-dimensional length scale, £gps,
of the observable geomagnetic field structures on the CMB. This is estimated as £ops = 7/1max,
where n1max =13 is the highest spherical harmonic degree resolved in present-day geomagnetic
field models [2,5]. The corresponding dimensional scale is Ly,s ~ 500 km [2,18]. In contrast, the
dimensional value of the cross-over scale in Earth’s core is £x = (Ag /Rmo)D >~ 2km, using A, ~ 1,

LE09107 €L ¥ 205§ 2014 BioBuiysqndiraposiefor-edsy H


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on March 15, 2017

Rmy~10% and D ~2260km as the depth of the outer core fluid depth. Our magnetostrophic
cross-over scale estimates for flow structures in the core are far smaller than the smallest
observable geomagnetic field scale. This implies that the observable part of Earth’s magnetic field
are best described by quasi-geostrophic dynamo processes [22,24,26], in agreement with recent
interpretations of geomagnetic secular variation data [5,65].

(c) Cross-over Ekman number estimates

It may also be of interest to estimate if magnetostrophic conditions are expected to arise for a
given dynamo system’s input parameters. For instance, if we assume that the rotating convective
onset scale is dominant, £;; = E1/3 can be inserted into (4.6), giving

1/2
AZ 1
A~ ° . 4.8
(Rmo EV 3) “8)
Assuming magnetostrophic conditions occur at A ~ 1, solving for E yields an estimate for the

cross-over Ekman number value for E1/3-scale flow:

6

Ao 3
EX,onset ~ Rimg = ex- (4.9)

If E < ExX onset, flows occurring on the E'/3-scale will be affected by Lorentz forces. In contrast, if
E > Ex onset, the onset scales are likely to be too large to feel significant magnetic effects. When the
turbulent hydrodynamic scale, £1; = Ro/2 = (RmyE/Pm)1/2,is substituted into (4.6), the cross-over
Ekman number then scales as
A‘j Pm
Rm3 '
For example, in a dynamo simulation with A, =1, Pm =1, Rm, =100, we estimate that the value
of the cross-over Ekman number will be of order 107°.

E‘X,turb ~ (4.10)

5. Discussion

The essential argument made here is that magnetostrophically balanced convection dynamics
do not occur when the linear Elsasser number A, ~1 as defined in (1.7), but rather when
A ~1 as defined in (4.2). We estimate that this A ~1 transition is scale-dependent, and can be
approximated to occur at the magnetostrophic cross-over flow scale £x = A% /Rm,. Thus, it is
hypothesized that a magnetostrophically balanced convective state can exist only on scales below
Ux (figure 9). Because the system-scale value of A is typically less than unity in planetary dynamo
models (table 1), our analysis implies that their large-scale convective flows must be in quasi-
geostrophic balance [28,34,56]. Estimates suggest that £x <1 for planets as well (table 2). Thus,
large-scale quasi-geostrophic convective flows are hypothesized to exist in planetary core settings
as well [26].

(@) Dynamo model implications

We hypothesize that local magnetostrophic convection dynamics can only exist in nonlinear
dynamo systems on flow sclales below the magnetostrophic cross-over scale, £;; < €x. If this
local magnetostrophic convection follows the linear predictions (figure 6), then we argue that
the magnetostrophic convection scale will tend to increase, reaching up to a saturation value that
lies in the vicinity of €x. If ¢£;; were to increase further still beyond £x, equation (4.7) implies
that magnetostrophic conditions would no longer exist. Thus, if the saturation scales significantly
exceeds (x, these flows will be quasi-geostrophic in nature, with magnetostrophic effects arising
only at higher orders [26,66]. If the saturation scale were to significantly exceed ¢x [56], this would
occur to due processes that are not likely to be magnetostrophic in nature, such as via alow Rossby
number, high Reynolds number inverse hydrodynamic cascade (e.g. [67]).
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It is reasonable that fx could provide a magnetostrophic saturation scale in dynamo
simulations (e.g. [20,28,34,56,63], cf. [68]). However, the value of £x is probably not constant in
these models. Because magnetic field strengths vary both spatially and temporally within dynamo
generating regions, it is likely that the value of the cross-over scale will also vary with the local
magnetic field intensity. This may explain, for example, the radially varying characteristic length
scales found in figure 2 of Yadav et al. [27].

In rapidly rotating spheres and spherical shells, we put forward a more detailed prediction.
In spherical systems, A, =0 rotating convection onsets with an EY3D azimuthal scale [38,48].
Thus, the azimuthal wavenumber scales as m ~ E~1/3. The axial length scale is system scale.
The cylindrical scale is large as well, owing to the presence of broad spiral structures [48] or
cylindrically radial sheets that can cross a significant portion of the fluid shell [69]. We hypothesize
that it is only the azimuthal length scales that will tend to increase in scale to ¢x in spherical
dynamo systems. Thus, the azimuthal wavenumber will approach m ~ 7 /€x in regions of the
fluid with A > 1, as appears to be the case in the equatorial slices shown in Yadav et al.’s [34]
figure 2 and in Aubert ef al.’s [28] figure 5. It should be possible to test this hypothesis using
spherical dynamo simulation results by making a scatter plot of the local azimuthal wavenumber
m versus the local magnetic field intensity B(x). Thus, from (4.6), we predict that the m ~ E~1/3
rotating convection scaling trend will hold in regions where A <1 and will transition to a local
Elsasser number based scaling such that

92

moc 23 — m o
B(x)*

(5.1)

in magnetostrophic regions where A 2 1. We further argue that the magnetostrophic decrease in
wavenumber (m o B(x)~*) will create a feedback, driving the local value of A towards unity where
the process will saturate.

Our cross-over scaling estimates lead us to argue that ¢x 21 globally magnetostrophic
dynamos are not likely to be accurate proxies for low £x dynamo systems. Following Calkins et al.
[26], we argue that the dynamical balance in A ~ 1, £x < 1 regions will be locally magnetostrophic,
but that the over-arching diagnostic force balance is still likely to remain geostrophic in nature.
Evidence for this scenario exists in the study of Aubert ef al. [28]. There they have generated a
suite of A, ~ 20, Rm, ~ 103 spherical dynamo solutions using relatively low Pm, low E large-eddy
simulations. In basic agreement with our £x scaling estimates, spectral force plots (their figure 2)
demonstrate that the solutions attain a zeroth-order, quasi-geostrophic diagnostic balance across
scales, with first-order, magnetostrophic dynamical balance arising on smaller scales ¢ < 0.1.

However, the cross-over scale’s quadratic depence on A, cannot be neglected in (4.7). For
example, the ¢x ~ 1 global magnetostrophic regime appears to have been reached in the spherical
dynamo modelling study of Dormy [63]. Based on the results given in table 1 in [63], the ‘strong
field” cases have A, exceeding 10 whilst R, >~ 100, such that £x 2 1 and A Z 1. Because the cross-
over scale appears to exceed the system scale in these P ~ 10 models, the convective flows may
be in global (system-scale) magnetostrophic balance. Impressively, these models are found to
display classically-predicted magnetostrophic dynamo behaviours, such as subcritical dynamo
bifurcations [18].

(b) Planetary applications

Estimates of ¢x are given in table 2 for all the dynamo-bearing planetary bodies in the solar
system. Similar to our estimates for Earth, the planetary magnetostrophic cross-over scales all
lie below the scales that are presently accessible to external observation [64,70]. The rightmost
two columns in table 2 give the ratios of ¢x with the turbulent A, =0 rotating convection scale,
Leurp =~ R01/2, and the A, =0 rotating convection onset scale, £onset = EY3. The value of these
length scale ratios provides an estimate of A!/2 on that particular scale of flow. For example, if the
Ox /b < 1 for a given body, it is expected that motions occurring the turbulent scale of rotating
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Table 2. Planetary estimates of magnetostrophic cross-over parameters. Planetary parameters values are estimated based on
the values given in table 4 in [16]. However, their A, estimates are multiplied by 10 to incorporate the effects of strong internal
magnetic fields (cf. [4]).

A, Rm, Pm E £x £x /Lo x/ Lonset

convection will be largely unaffected by magnetic forces. If this length scale ratio is greater than
unity, we predict that magnetostrophic effects can occur at that scale.

On Mercury, Ganymede, Uranus and Neptune, both length scale ratios are far less than one,
implying that quasi-geostrophic convection exists in these bodies’ cores from the system-scale all
the way down the linear onset scale of rotating convection [26]. On Earth and Saturn, £x/€onset 2 1
and €x/lwp ~ 1, which suggests that magnetostrophic effects will exist at the smallest convection
scales and may occur up to, but not far beyond, the Ro!/? turbulent scale. Finally, both length scale
ratios are well above unity on Jupiter. Thus, magnetostrophic convection processes are expected
to significantly alter the hydrodynamic convection scales there and may produce externally
observable magnetostrophic signatures.

(<) Open questions and summary

Two fundamental simplifying assumptions have been made in developing our model for the
magnetostrophic cross-over scale, which leave open paths to modify the cross-over scale for more
complex systems. First, we have assumed in (4.4) that the magnetic induction processes are in
quasi-static balance. This assumption is made based on the results of many present day, quasi-
laminar (usually Pm ~ 1) dynamo models. In these models, the flows are nearly quasi-steady with
local scale Reynolds numbers and magnetic Reynolds numbers close to unity. Thus, we argue that
the local-scale induction will be well-described, at first order, by a quasi-static approximation
[20,28,63]. However, it is not clear that quasi-steady induction accurately describes high Rm
induction occurring on large scales in planetary settings where time variations may help balance
the induction term [71,72]. Furthermore, as higher Reynolds number, lower Pm dynamo models
are carried out, we expect that time varying inductive balances may become essential to include
in cross-over scale models (cf. [56,68,73,74]).

Second, it is assumed, primarily for simplicity, that the velocity and magnetic magnitude
estimates are scale invariant quantities each with well-defined variational scales. In fully
turbulent magnetohydrodynamic settings, though, the velocity and magnetic fields are expected
to be spectrally varying quantities [75,76]. If the magnetic and velocity fields have power law
variations, then they can be expressed as

U~Uyt® and B~ B,t#, (5.2)
and (4.2) may be recast as

A= [i] (Be@B—o1y, (5.3)

Rm,
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The value of the Elsasser number in (5.3) can strongly depend on the values of the exponents,
a and B, that describe the respective velocity and magnetic field spectra. Detailed predictions of
a and B values are difficult to make with possible estimates easily ranging from o =5 to g (e.g.
figure 3b in [77]). However, what we can predict based on (5.3) is that qualitatively differing A(¢)
behaviours should arise in the various regimes of multi-scale core flow, each likely having unique
a and g values (e.g. figure 8 in [24]).

In sum, the results of our scaling arguments inspire great optimism for the future of planetary
dynamo modelling. Many core dynamicists have surmised that because geodynamo models
generate leading-order quasi-geostrophic flows, rather than magnetostrophic convective flows,
they cannot be faithfully modelling core physics. In contrast, this work argues that A, ~ 1 core
convection should be quasi-geostrophically balanced on large scales ¢ 2> £x, which are the only
scales presently resolvable by geomagnetic field observations and by many numerical simulations
of planetary dynamo action (figure 8b). At small scales below £x, on the other hand, core dynamics
may be well represented by rotating convection occurring in the presence of a strong magnetic
field, not dissimilar from the conditions assumed by linear theory. Small-scale core flow may
then be adequately modelled by turbulent rotating magnetoconvection studies [33,78]. Thus, in
upcoming model generations, we must accurately incorporate the behaviour of the small-scale,
magnetostrophic convective turbulence within a model of large-scale, quasi-geostrophic flow [26],
which may then be compared reasonably with core flow inversions from geomagnetic secular
variation observations [79].
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